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Abstract
Hole wavefunctions and energy spectra have been calculated in a silicon quantum dot with a
shallow acceptor. Within the framework of the envelope function approach we have found
anomalously strong splitting of the energy levels caused by the Coulomb and the spin–orbit
interactions as compared to bulk silicon. If the quantum dot has been doped with boron, the
short range part of the Coulomb field turns out to be weak, and the long range hydrogenic part
plays a crucial role in the energy splitting. In the case where the dot is doped with any other
element of the third group, the role of the short range Coulomb interaction becomes
determinative. The latter provides stronger energy splitting compared to that in the model of
hydrogen-like impurity. In both cases the energy of the splitting substantially exceeds the
typical bulk values for these acceptors due to the quantum confinement effect. We have also
analysed the charge distribution in the dot and the hole spectrum, depending on the acceptor
position inside the nanocrystal.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Introduction of shallow impurities into silicon quantum dots
can strongly modify their electronic structure [1–5] and optical
properties [6–13]. Due to the interplay between quantum
confinement [14–17] and the microscopic short range Coulomb
field (see, e.g., [18–22]) leading to the central cell correction
and valley–orbit splitting [23, 24], the dielectric properties of
silicon nanocrystals are also modified [25–28]. Manipulation
with the dot emittance implies the possibility of controlling
the recombination rates of various electron–hole transitions.
In turn, control of the recombination rates has been based on
knowledge of the wavefunctions of quantum states involved in
the recombination process.

The goal of our theoretical analysis is to find the energies
and wavefunctions of the ground and several excited hole states
of a doped silicon quantum dot. We shall discuss the strong
splitting of the energy levels, caused by the hydrogenic and
central cell potentials of the impurity ion, and the spin–orbit
interaction. In the present paper we consider the case of a
shallow acceptor impurity of group III embedded into silicon
nanocrystals 2–5 nm in diameter. We shall also study the

dependence of the energy spectra and hole density on the
nanocrystal size and the acceptor displacement from the dot
centre.

For this purpose we employ envelope function approxima-
tion, in which the acceptor electrostatic field has a macroscopic
long range component and a diagonal microscopic short range
one. The latter is introduced in a ‘macroscopic’ k · p Hamilto-
nian as an additional sharply varied potential [18–22]. Keeping
within the framework of a macroscopic picture, it is possible to
use the bulk static dielectric constants εs and εd for materials
inside and outside the dot, respectively. As a result, the long
range potential, being of hydrogen-like kind in bulk silicon, is
modified due to the appearance of polarization charges at the
nanocrystal boundary [14–17]. The existence of an excess pos-
itive charge near the dot boundary has been confirmed recently
by the microscopic first-principles calculations of Lannoo et al
[26] and Trani et al [28].

Note that various questions concerning electronic and
optical structure of undoped silicon quantum dots have already
been answered in detail earlier; see, e.g., for a review the book
of Delerue and Lannoo [29]. At the same time, theoretical
study of the impurity states in the dots was not so extensive,
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especially for the dots doped with acceptors. The works of
Zhou et al [2] and Xu et al [3] represent some exception. The
authors of these papers have calculated binding energies and
chemical shifts for group III acceptors in silicon nanocrystals,
and found them to be very large compared to those for bulk
silicon. However their findings were attributed to very small
dots (less than 2 nm in size) with exclusively centrally located
acceptors. We present here both analytical and numerical
results related to the fine structure of the hole states in p doped
silicon quantum dots over a wider range of the dot sizes, and
for arbitrary acceptor position inside the dot.

2. Basic equations of the model

We consider a silicon quantum dot of radius R, embedded
into a wide band dielectric matrix, and assume, for simplicity,
the potential barriers for holes to be infinitely high. The total
potential energy of a hole depends not only on the hole position
vector r but also on the acceptor position vector h, and consists
of the following four parts:

U(r, h) = U0(r) + Vsp(r) + Vih(r, h) + W (r, h). (1)

Here U0(r) is the confining potential equal to zero inside, and
infinity outside, the dot.

The second part Vsp(r) describes an interaction between
the hole and its own image arising due to the charge
polarization on the boundary between the silicon nanocrystal
and its dielectric surrounding. Since the hole interacts with its
own image, the corresponding potential energy is often referred
to as a self-polarization term. It can be represented in the form
(see, e.g., [15, 29, 30])

Vsp(r) = −e2(εs − εd)

2εs R

∞∑

l=0

l + 1

lεs + (l + 1)εd

r 2l

R2l
, (2)

where εs and εd are the static dielectric constants of silicon and
the dielectric matrix, respectively. Because we write the self-
polarization term for holes, it has an opposite sign with respect
to the one for electrons [15, 29, 30].

The third term Vih(r, h) introduced in equation (1)
represents a macroscopic hole–ion interaction. It has the form

Vih(r, h) = − e2

εs|r − h| − e2(εs − εd)

εs R

×
∞∑

l=0

hlr l

R2l

l + 1

lεs + (l + 1)εd
Pl(cos θ), (3)

where θ is the angle between h and r. The first term
corresponds to the direct Coulomb attraction between the
acceptor and hole, while the second term describes an
interaction between the hole and ion image. This term
disappears when εs and εd become equal.

Finally, W (r, h) is the so-called central cell field [23, 24]
arising from the hole–ion interaction as well. However, in
contrast to Vih(r, h) reflecting the long range macroscopic part
of the Coulomb interaction, the term W (r, h) is the short range
contribution that manifests itself at the microscopic level. This
field exists in a distance of about the Bohr radius around the

acceptor nucleus and, in fact, vanishes at the boundary of the
unit cell containing the acceptor. Hence, one may assume the
central cell field in a quantum dot to be of the same form as
in the bulk. For bulk materials an approximate expression for
W (r, h) was obtained earlier from first-principles calculations.
Its explicit form is as follows [19, 20]:

W (r, h) = − e2

|r − h|
×

(
Ae−α|r−h| + (1 − A)e−β|r−h| − e−γ |r−h|

εs

)
, (4)

where α, β , γ , and A are some fitting parameters. Their
values vary within about twenty per cent related to 0.755/aB,
0.35/aB, 2.45/aB, and 1.14, respectively, depending on the
experimental data set to be used [19]. Here aB stands for the
Bohr radius.

In what follows, we shall calculate several lower hole
energy levels and wavefunctions in a silicon quantum dot
doped with an acceptor. We shall also find the splitting of the
hole spectrum caused by the spin–orbit interaction and electric
field of acceptor in the case where the latter occupies some
arbitrary asymmetric position inside the dot. To this end we are
going to exploit here the envelope function approximation (k·p
method) whose applicability to 2–5 nm silicon nanocrystals
has been confirmed earlier in a lot of publications; see,
e.g., [4, 5, 31–35].

To find the hole states we have to solve a single-particle
Schrödinger-like equation of the following kind:

(H + Ū(r, h))|�〉 = E |�〉. (5)

Here, H is the bulk k · p Hamiltonian operator acting in the
space of the six-dimensional (6D) envelope function vectors
|�〉, and E stands for the hole energy. Components of
the 6D vector |�〉 are slowly varied expansion coefficients
� j(r) of the total wavefunction in the Bloch state basis of
a � point: |Y Z〉|↑〉, |X Z〉|↑〉, |XY 〉|↑〉, |Y Z〉|↓〉, |X Z〉|↓〉,
|XY 〉|↓〉, where |↑〉 and |↓〉 are ‘up’ and ‘down’ spinors,
respectively, and the Bloch functions |Y Z〉, |X Z〉, |XY 〉
belong to the irreducible representation �25′ . The functional
operator Ū(r, h), introduced in equation (5), differs from
U(r, h) defined before with equation (1).

As usual, when obtaining the k · p Hamiltonian we
have to multiply the single-particle Schrödinger equation by
any conjugate Bloch function and then integrate the equation
obtained over the unit-cell volume 	. As a consequence, all the
external fields appear in the k·p Hamiltonian in some averaged
form.

Since the long range part of the Coulomb interaction
Vsp(r)+ Vih(r, h) is a smooth function, it is strictly diagonal in
the Bloch state basis. The averaging over the unit-cell volume
does not change this function which gives rise in diagonal
elements of the k · p Hamiltonian.

The central cell potential W (r, h) varies sharply and,
generally speaking, can connect Bloch states corresponding
to essentially different wavevectors in a Brillouin zone, as it
takes place in a conduction band of silicon [23, 24]. However,
because of the isotropic form of the function W (r, h) with
respect to the acceptor site and �25′ symmetry of the Bloch
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functions, one can conclude that the short range potential,
as well as the long range one, will contribute only to the
diagonal elements of the k · p matrix. At the same time
the short range field crucially changes its form in the k · p
Hamiltonian compared to that in equation (4). As has already
been pointed out, averaging W (r, h) over the unit cell yields,
in fact, a nonzero value only for the unit cell containing the
acceptor. Consequently, the short range diagonal elements may
be approximated by the Dirac δ function

W̄ ≡ 〈Y Z | W (r, h)|Y Z〉	 = 〈X Z | W (r, h)|X Z〉	
= 〈XY | W (r, h)|XY 〉	 = −Qδ(r − h), (6)

as has been done earlier for donors in silicon nanocrys-
tals [4, 5, 36] and layers [37]. Here, 〈A| W |B〉	 ≡
	−1

∫
	

A∗(r)W (h, r)B(r) dr, and Q is some parameter inde-
pendent of r and h, which can be determined from experimen-
tal data for the acceptor energy levels in bulk silicon.

It is known that the experimentally observed binding
energies for group III acceptors (except for boron) in bulk
silicon strongly differ from those obtained theoretically within
the framework of the hydrogen-like model [21, 38, 39]. For
example, the experimental value of the binding energy for
aluminium equals 68.9 meV, while the calculated value, which
is the same for all hydrogen-like acceptors, is substantially less
and equals 44.4 meV according to the latest results of Lipari
and Baldereschi [21]. The difference may be attributed to
the short range potential that should be, obviously, taken into
account.

Let us denote the experimentally observed energy shift
of the acceptor binding energy related to the theoretically
calculated value (44.4 meV) as η. Then the number Q can be
expressed through η similarly to the method suggested earlier
for donors [36, 37]. This yields an approximate expression:
Q = π(a∗)3η, where a∗ = h̄2εs/m∗e2 is the analogue of
the hole effective Bohr radius. The definition of m∗ and the
explanation of why a∗ does not coincide with the true hole
effective Bohr radius ah ≡ h̄2εs/mhe2 will be given a little
later. Thus, the function Ū(r, h) is represented as follows:
Ū(r, h) = U0(r) + Vsp(r) + Vih(r, h) − Qδ(r − h).

It is convenient to write the k · p Hamiltonian matrix H
in equation (5) for holes as the sum of three parts: H =
H (0)+ H (1)+ H (so). Here H (0) = (p2/2mh)×I is the isotropic
part obtained as the average of the total k ·p matrix over angles
in the p space, I stands for the 6 × 6 identity matrix, the hole
effective mass mh = 3m0/(L + 2M), where the numbers L,
M , N are some dimensionless empirical parameters of the k ·p
Hamiltonian operator in a valence band. For silicon they equal
5.8, 3.43, 8.61, respectively [40]. H (1) is the anisotropic part
that can be represented by two equivalent blocks 3 × 3 situated
on a leading diagonal of the total 6 × 6 k · p matrix:

H (1) =
(

H3 0
0 H3

)
,

H3 = 1

2m0

⎛

⎝
L−M

3 (3p2
x − p2) N px py

N px py
L−M

3 (3p2
y − p2)

N px pz N py pz

N px pz

N py pz
L−M

3 (3p2
z − p2)

)
.

(7)

Finally, the term H (so) describes the spin–orbit interaction. For
holes it is written as

H (so) = 1
3

⎛

⎜⎜⎜⎜⎜⎝

0 i 0 0 0 −

−i 0 0 0 0 i
0 0 0  −i 0
0 0  0 −i 0
0 0 i i 0 0

− −i 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
. (8)

We have introduced above the spin–orbit energy  equal to
44 meV for silicon.

Let us now return to the inequality m∗ 
= mh,
and, consequently, a∗ 
= ah, and briefly discuss this
problem. Strictly speaking, in order to apply the procedure
of determination of Q through the shift η similarly to the
one proposed earlier [4, 5, 36, 37], we have to use the bulk-
like envelope function �(r) in the equality Q|�(0)|2 = η.
In the case of the single band, �(r), as a rule, represents
the 1s function of the hydrogen-like ground state with the
normalization constant (πa3)−1/2, where a stands for the
effective Bohr radius of the single-band problem. Therefore
the parameter Q may be written as πa3η. However, as has
been shown by Lipari and Baldereschi [21, 38, 39], the single-
band model is insufficient to provide a required accuracy in
a binding energy of the hydrogenic acceptor. According to
their analysis [21], the six-band model with envelope functions
being the expansions over the spherical harmonics up to
the orbital quantum number l = 8 has to be considered
in order to achieve the needed accuracy. Correspondingly,
instead of the simple relationship between Q and η, typical
for the single-band model, we shall obtain some cumbersome
expression including normalization coefficients of all the s-
type hydrogenic envelope functions (at least from 1s to 8s) with
their weight coefficients which come from the expansion of the
envelope functions over the spherical harmonics.

At the same time, since the energy of the acceptor state lies
above the energy maximum within the band gap, it seems to
be quite logical to suppose that this state forms predominantly
from the heavy holes with the greater value of the effective
mass and smaller value of the effective Bohr radius than mh

and ah, respectively. On this basis we may, presumably, replace
the cumbersome expansion over the spherical harmonics of
Lipari and Baldereschi by the single 1s-type hydrogen-like
envelope function with some other value of the effective Bohr
radius a∗. The effective mass m∗ in the expression for a∗
should be chosen so that the correct value of the binding
energy 44.4 meV [21] could be obtained. Indeed, this value
turns out to be very close to the heavy hole effective mass
(theoretically calculated value 0.45m0) and equals 0.42 times
the free electron mass. The Bohr radius a∗ equals 0.635ah in
this case.

It is important to note that the boron acceptor takes
a special position in our consideration. Since the
experimental value of the binding energy for boron completely
coincides [21] with that obtained within the hydrogen-like
model (44.4 meV), the parameter Q turns out to be zero in this
case. This means that the central cell field will not contribute
to the hole spectrum and wavefunctions of the B doped dot. As
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a consequence, boron may be treated as a hydrogenic acceptor.
It does not take place for all the other group III acceptors:
Al, Ga, In, and Tl. As has been already pointed out, the
energy shift η is sufficiently great for these acceptors and
equals 24.5 meV, 28.3 meV, 111.8 meV, and 203.3 meV [22],
respectively. No doubt the central cell field will play a crucial
role in the hole state formation for a silicon nanocrystal doped
with these acceptors. On this basis, solving the basic equation
(5) will be carried out separately for these two different kinds
of acceptors.

Let us discuss the approach to solving equation (5), which
is valid for all kinds of acceptors. Because of the isotropic and
diagonal form of the operator H (0)+U0(r), its eigenstates may
be classified similarly to atomic systems as the states of s, p, d
type, etc [33]. Accordingly, one may expand the components
of the envelope function vectors |�〉 over the proper basis of
H (0) + U0(r) as

� j(r) =
∑

α

C jα|α〉, (9)

where |α〉 denote the s, p, d, . . . eigenstates of the operator
H (0) + U0(r), and C jα are the expansion coefficients. For
convenience, we choose the vectors |α〉 as real functions with
the symmetry of x , y, or z type (for p-type states), xy, xz, yz,
x2 − y2, or r2 − 3z2 type (for d-type states), etc. Substitution
of � j (r) into equation (5) yields algebraic equations for C jα:

(E − Eα)Ciα =
∑

β

〈α|H (1)

i j + H (so)
i j + V (r, h)δi j |β〉C jβ.

(10)
Here V (r, h) = Vsp(r) + Vih(r, h) + W̄ is the Coulomb
potential energy, δi j stands for the Kronecker delta, and
Einstein convention has been used when summing over j . Eα

denotes the energy of the state |α〉, i.e. the eigenvalue of the
operator H (0) + U0(r). For instance, s- and p-type states have
the energies Es = h̄2π2/2mh R2 and Ep = h̄2μ2/2mh R2,
where μ = 4.4934 is the first root of the spherical Bessel
function j1(x). In the simplest case of no spin–orbit and
Coulomb interactions, one can obtain several low energy hole
states in the quantum dot, if we restrict ourselves to the 1s-,
1p-, 1d-type (s-, p-, d-type states in the following), and 2s-type
states only in equations (9) and (10).

In figure 1 the energies of several hole states have been
plotted as functions of the dot radius. It is seen that two
lower hole levels have very close energies. The lowest level,
being sixfold degenerate, has the energy E0h = Es and
corresponds to six electron states with the s-type envelope
function. The second level corresponds to six electron
states with the p-type envelope functions and the energy
E1h = Ep

[
1 − (3N + 2L − 2M)/(5L + 10M)

]
. Like the

other three levels, shown in the figure with short dashed lines,
this one has been obtained as a result of the p–p hybridization.
Dotted lines represent the d–d hybridized energy levels, and
the d–2s hybridized levels are represented with long dashed
lines. A similar structure of the hole spectrum was found
earlier [33, 35] within the framework of the k · p method for
undoped silicon nanocrystals.

As is shown in figure 1, the two lowest levels are well
separated from the other ones shifted up by the distance

1.2 1.4 1.6 1.8 2 2.2 2.4

R (nm)

E
ne

rg
y 

(e
V

)

Δ =00.5

1

1.5

2

2.5

Figure 1. Energy spectrum of the undoped dot at the zeroth
spin–orbit splitting. Solid line: s-type level. Short dashed lines: p–p
hybridized levels. Dots: d–d hybridized levels. Long dashed lines:
2s–d hybridized levels. The degeneracy degree (from bottom to top):
6; 6; 6; 4; 6; 4; 6; 6; 2; 6; 2; 6.

substantially exceeding the magnitude of the Coulomb or spin–
orbit energy. On this basis, electron states of all the upper
levels weakly mix with the states of the energies E0h and
E1h. Therefore, these upper states will not contribute, in fact,
to the spectrum splitting at the bottom of the hole ‘energy
band’. Consequently, we may omit them from our further
consideration. In contrast, twelve states with the energies E0h

and E1h will be efficiently mixed due to the Coulomb and spin–
orbit interactions forming some fine structure of the spectrum.
In the following we restrict ourselves to these states only and
investigate their splitting.

3. The ‘zoology’

First, we take into account the spin–orbit coupling. As
is known, diagonalization of the matrix H (so) with the six
Luttinger functions [41] of the angular momentum J = 3/2
and J = 1/2 gives fourfold and twofold hole levels with the
energies −/3 and 2/3, respectively. This property of the
spin–orbit interaction remains valid for quantum dots as well.
Diagonalization of the Hamiltonian matrix H + U0(r) within
the restricted basis of the twelve hole states yields two fourfold
and two twofold energies, as is shown in figure 2 with solid
lines. For the six states having the s-type envelope function
with the orbital momentum l = 0, the energies are E (0)

0h =
E0h − /3 for the quadruplet, and E (1)

0h = E0h + 2/3 for the
doublet. The states with the p-type envelope function (l = 1)
have the energy of the splitting two times less. In particular,
the quadruplet has the energy E (0)

1h = E1h − /6, while the
energy of the doublet is E (1)

1h = E1h + /3. Because of the
spectrum degeneracy, the wavefunctions may be chosen to a
certain extent arbitrarily. Nevertheless, it is more convenient to
classify the wavefunctions of the electron states obtained over
the eigenvalues of different angular momentum operators of
the problem. Below we adduce this classification.

In the case of no Coulomb interaction (V (r, h) → 0
in equation (10)), the Hamiltonian k · p matrix H (0) +
H (1) + H (so) + U0(r) can be formally written in the
basis of the twelve 6D envelope function vectors being
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Figure 2. Spin–orbit splitting of the two lowest levels versus the dot
radius. The energies of the split levels of the s-type E (0,1)

0h (lower
parallel solid lines) and p-type E (0,1)

1h levels (upper parallel solid
lines) have been plotted relative to the lowest unperturbed s-type
level (lower dashed line). The upper dashed line indicates the upper
unperturbed p-type level. The lower s-type and p-type levels are
fourfold degenerate. The upper s-type and p-type levels represent the
doublet energies.

the solutions of equation (10) with the energies E (0,1)

0h and
E (0,1)

1h :

H =
12∑

m=1

|�(m)〉E (m)〈�(m)|, (11)

where E (m) stands for E (0,1)
0h and E (0,1)

1h . Straightforward
calculation shows that the Hamiltonian matrix H commutes
with the following momentum operators: I2, S2, l2, K2, Kz ,
F2, Fz , which form the complete set. Here I and l are
orbital moments of the Bloch [41] and envelope functions,
respectively, S stands for spin, and K = I + l is the total
orbital momentum of the hole state. Finally, F = I + l + S is
the total angular momentum which was introduced earlier by
many authors; see, e.g., [42–45] for A2B6, [34, 35] for silicon,
and [46] for A3B5 quantum dots. In a certain sense operators I2

and S2 are trivial, because they represent identity matrices. All
the other operators are nontrivial. Correspondingly, electron
states belonging to a certain degenerate energy level may differ
from each other by some quantum numbers from the above
complete set. Let us denote these numbers, excluding the
former two, as l, K , Kz , F , Fz , respectively. It is seen that
the Luttinger quantum numbers J and Jz corresponding to the
total angular momentum of a Bloch state are no longer good
quantum numbers because of the appearance of states with the
p-type envelope functions.

The wavefunctions of all the twelve states are character-
ized with the six nontrivial quantum numbers, if the principal
quantum number defining an energy level is taken into account.
However we shall characterize the eigenfunctions, for simplic-
ity, with only three numbers: F , Fz , and l, which unambigu-
ously define each of the obtained electron states. Accordingly,
the 6D envelope function vectors |�(m)〉 describing these states
will be denoted as |F; Fz; l〉. As a result, the s-type quadruplet

with the energy E (0)

0h is defined by the following vectors:

∣∣∣∣
3

2
; 3

2
; 0

〉
= − |s〉√

2

⎛
⎜⎜⎜⎜⎜⎝

1
i
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

,

∣∣∣∣
3

2
; −3

2
; 0

〉
= |s〉√

2

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
1
−i
0

⎞
⎟⎟⎟⎟⎟⎠

,

∣∣∣∣
3

2
; 1

2
; 0

〉
= − |s〉√

6

⎛

⎜⎜⎜⎜⎜⎝

0
0

−2
1
i
0

⎞

⎟⎟⎟⎟⎟⎠
,

∣∣∣∣
3

2
; −1

2
; 0

〉
= |s〉√

6

⎛

⎜⎜⎜⎜⎜⎝

1
−i
0
0
0
2

⎞

⎟⎟⎟⎟⎟⎠
,

(12)
while 6D vectors of the s-type doublet (the energy E (1)

0h ) have
the form

∣∣∣∣
1

2
; 1

2
; 0

〉
= − |s〉√

3

⎛

⎜⎜⎜⎜⎜⎝

0
0
1
1
i
0

⎞

⎟⎟⎟⎟⎟⎠
,

∣∣∣∣
1

2
; −1

2
; 0

〉
= |s〉√

3

⎛

⎜⎜⎜⎜⎜⎝

1
−i
0
0
0

−1

⎞

⎟⎟⎟⎟⎟⎠
.

(13)
The Bloch functions of all these states coincide with the six
Luttinger functions of the momentum J = 3/2 and J = 1/2.
It is not so for the other six states, whose wavefunctions may
not be represented as the product of one of the Luttinger
functions and p-type envelope function. They have symmetry
that is similar to that of the above six states; however the
quantum number l equals now 1.

The wavefunctions of the p-type quadruplet (the energy
E (0)

1h ) are defined with the vectors

∣∣∣∣
3

2
; 3

2
; 1

〉
= 1

2

⎛
⎜⎜⎜⎜⎜⎝

−i|pz〉
|pz〉

i|px〉 − |py〉
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

,

∣∣∣∣
3

2
; −3

2
; 1

〉
= 1

2

⎛

⎜⎜⎜⎜⎜⎝

0
0
0

−i|pz〉
−|pz〉

i|px〉 + |py〉

⎞

⎟⎟⎟⎟⎟⎠
,

∣∣∣∣
3

2
; 1

2
; 1

〉
= 1

2
√

3

⎛

⎜⎜⎜⎜⎜⎝

−2|py〉
2|px〉

0
−i|pz〉
|pz〉

i|px〉 − |py〉

⎞

⎟⎟⎟⎟⎟⎠
,

∣∣∣∣
3

2
; −1

2
; 1

〉
= 1

2
√

3

⎛
⎜⎜⎜⎜⎜⎝

−i|pz〉
−|pz〉

i|px〉 + |py〉
−2|py〉
2|px〉

0

⎞
⎟⎟⎟⎟⎟⎠

.

(14)
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Finally, the wavefunctions of the p-type doublet (the
energy E (1)

1h ) are as follows:

∣∣∣∣
1

2
; 1

2
; 1

〉
= 1√

6

⎛
⎜⎜⎜⎜⎜⎝

|py〉
−|px〉

0
−i|pz〉
|pz〉

i|px〉 − |py〉

⎞
⎟⎟⎟⎟⎟⎠

,

∣∣∣∣
1

2
; −1

2
; 1

〉
= 1√

6

⎛

⎜⎜⎜⎜⎜⎝

−i|pz〉
−|pz〉

i|px〉 + |py〉
|py〉

−|px〉
0

⎞

⎟⎟⎟⎟⎟⎠
.

(15)

Despite the fact that the functions with l = 1 are not
eigenfunctions of the Luttinger momentum operators J2 and Jz ,
the matrix of the spin–orbit interaction is rigorously diagonal
in a basis of these functions.

4. Hole states in a nanocrystal with an acceptor

Now we can do the last step and take into account the Coulomb
field. Existence of the impurity in the nanocrystal will result in
a mixing of the twelve electron states (equations (12)–(15)). It
is possible to expand the 6D envelope function vector |�〉 for
the doped dot over the states |F; Fz; l〉 as

|�〉 =
3/2∑

F=1/2

F∑

Fz=−F

1∑

l=0

fF,Fz ,l |F; Fz; l〉, (16)

where fF,Fz ,l are constant expansion coefficients being the
solutions of the eigenstate and eigenvalue problem

(E − EF,Fz ,l) fF,Fz ,l

=
3/2∑

G=1/2

G∑

Gz=−G

1∑

n=0

〈F; Fz; l| V (r)|G; Gz; n〉 fG,Gz ,n, (17)

where E is an eigenvalue to be determined.
The solution of equation (17) depends on the explicit form

of V (r) that is different for hydrogenic and real acceptors
creating the central cell field. We first consider the situation
with the hydrogen-like (boron) acceptor.

4.1. Hydrogen-like acceptor

Solving equation (17) gives the following results. The energy
spectrum develops into a fine structure consisting of the six
close doubly degenerate levels. Two energies of the six can be
found analytically from equation (17). As will be established
later, these two energies correspond to the ground state doublet
(the energy E0) and the doublet of the fourth excited state (the
energy E4):

E0,4 =
{

E (0)
0h (q) + E (0)

1h (q)

±
√

(E (0)

0h (q) − E (0)

1h (q))2 + 2V 2(q)

}
{2}−1, (18)

where V 2(q) = V 2
x (q) + V 2

y (q) + V 2
z (q), E (0,1)

0h (q) =
E (0,1)

0h + Vss(q), E (0,1)

1h (q) = E (0,1)

1h + Vpp(q), q =
h/R. The minus sign stands for E0, and the plus sign
stands for E4. We have introduced also matrix elements
of the Coulomb potential energy Va(q) ≡ 〈s|Vsp(r) +
Vih(r, h)|pa〉, Vss(q) ≡ 〈s|Vsp(r) + Vih(r, h)|s〉, and Vpp(q) ≡
〈〈pa|Vsp(r) + Vih(r, h)|pa〉〉 for the case where W̄ = 0. It
should be noted that the Coulomb matrix elements of pa−pa

type have some anisotropic addition proportional to q2 − 3q2
a .

However, it is negligibly small compared to the isotropic
average part denoted here as Vpp(q).

The wavefunctions of the lowest doublet with the energy
E0 may be defined by the following orthonormal 6D vectors:

|�(1)

0 〉 = − sin β

h

(
i
hzh+
h⊥

∣∣∣∣
3

2
; 3

2
; 1

〉
−

√
3

2
h⊥

∣∣∣∣
3

2
; 1

2
; 1

〉

+ h2−
2h⊥

∣∣∣∣
3

2
; −3

2
; 1

〉)
+ cos β

h2

(
−h+(h2

z + h2)

2h⊥

×
∣∣∣∣
3

2
; 3

2
; 0

〉
− i

√
3

2
hzh⊥

∣∣∣∣
3

2
; 1

2
; 0

〉

+
√

3

2
h−h⊥

∣∣∣∣
3

2
; −1

2
; 0

〉
− i

2

hzh2−
h⊥

∣∣∣∣
3

2
; −3

2
; 0

〉)
,

|�(2)
0 〉 = − sin β

h

(
h2+

2h⊥

∣∣∣∣
3

2
; 3

2
; 1

〉
−

√
3

2
h⊥

∣∣∣∣
3

2
; −1

2
; 1

〉

+ i
hzh−
h⊥

∣∣∣∣
3

2
; −3

2
; 1

〉)
cos β

h2

(
i

2

hzh2+
h⊥

∣∣∣∣
3

2
; 3

2
; 0

〉

−
√

3

2
h+h⊥

∣∣∣∣
3

2
; 1

2
; 0

〉
+ i

√
3

2
hzh⊥

∣∣∣∣
3

2
; −1

2
; 0

〉

+ h−(h2
z + h2)

2h⊥

∣∣∣∣
3

2
; −3

2
; 0

〉)
.

(19)

Correspondingly, the vectors of envelope functions of the
doublet with the energy E4 may be chosen as

|�(1)
4 〉 = cos β

h

(
i
hzh+
h⊥

∣∣∣∣
3

2
; 3

2
; 1

〉
−

√
3

2
h⊥

∣∣∣∣
3

2
; 1

2
; 1

〉

+ h2−
2h⊥

∣∣∣∣
3

2
; −3

2
; 1

〉)
+ sin β

h2

(
−h+(h2

z + h2)

2h⊥

∣∣∣∣
3

2
; 3

2
; 0

〉

− i

√
3

2
hzh⊥

∣∣∣∣
3

2
; 1

2
; 0

〉
+

√
3

2
h−h⊥

∣∣∣∣
3

2
; −1

2
; 0

〉

− i

2

hzh2−
h⊥

∣∣∣∣
3

2
; −3

2
; 0

〉)
,

|�(2)

4 〉 = cos β

h

(
h2+

2h⊥

∣∣∣∣
3

2
; 3

2
; 1

〉
−

√
3

2
h⊥

∣∣∣∣
3

2
; −1

2
; 1

〉

+ i
hzh−
h⊥

∣∣∣∣
3

2
; −3

2
; 1

〉)
+ sin β

h2

(
i

2

hzh2+
h⊥

∣∣∣∣
3

2
; 3

2
; 0

〉

−
√

3

2
h+h⊥

∣∣∣∣
3

2
; 1

2
; 0

〉
+ i

√
3

2
hzh⊥

∣∣∣∣
3

2
; −1

2
; 0

〉

+ h−(h2
z + h2)

2h⊥

∣∣∣∣
3

2
; −3

2
; 0

〉)
.

(20)
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Figure 3. s–p-type matrix elements V (q) and W (q) of the long and short range Coulomb potential energies, respectively, depending on q.
Numbers near the curves indicate the dot radius. It is seen that increase of V (q) and W (q) correlates with decrease of the ‘weight’ (see
figure 4).

Here h2 = h2
x + h2

y + h2
z , h2

⊥ = h2
x + h2

y , h± = hy ± ihx , and
the angle β is defined by

cos 2β = E1h(q) − E0h(q)√
(E1h(q) − E0h(q))2 + 2V 2(q)

, (21)

where E0h(q) = E0h + Vss(q), and E1h(q) = E1h + Vpp(q).
It is seen that F remains a good quantum number in the states
|�(1,2)

0,4 〉, in contrast to Fz and l.
However, it is not so for the other eight electron states.

As the numerical calculations show, the envelope function 6D
vectors (equation (16)) for these states are superpositions of
all the twelve vectors |F; Fz; l〉, including also the vectors
with F = 1/2. Evidently, F cannot be a good quantum
number for such superpositions. The only physical quantity
that has a defined value for all the states, independently of the
impurity position inside the nanocrystal, is the squared total
orbital momentum K2. Its value equals unity for all the states.
This is a consequence of us using the strongly simplified model
in which the number of unperturbed electron states is restricted
with only 12 with a given value K = 1 for each state. It
is, therefore, clear that no other value of K could appear as
a quantum number of the electron states. In this sense the
conservation of K2 is also trivial, similarly to the conservation
of I2 and S2, which has been pointed out before.

Let us briefly discuss the structure of the two ground states
depending on the acceptor position inside the nanocrystal, and
the nanocrystal size. The acceptor position in the dot, i.e.
the parameter q = h/R, influences the magnitude of the s–p

Coulomb matrix element V (q) =
√

V 2
x (q) + V 2

y (q) + V 2
z (q),

as is shown in figure 3. The dot radius R defines the spacing
between the unperturbed energy levels, shown in figure 1, as
R−2. At the same time V (q) falls proportionally to R−1 as R
increases; see figure 3. If E1h(q) − E0h(q) � V (q), then
cos β → 1 and sin β → 0. This means that the ground
states remain predominantly the states with the s-type envelope
function, i.e. l = 0 for these states, as in the cases of no
impurity in the dot or centrally located impurity. In contrast,
if E1h(q) − E0h(q) � V (q), then cos β → sin β → 1/

√
2.

In this case the s-type and p-type envelope functions have
equal ‘weights’ in the ground states. Thus, the quota of
the s-type envelope function asymptotically reduces to 0.5 as
the ratio V (q)/(E1h(q) − E0h(q)) increases. It is possible to

q

P
ro

ba
bi

lit
y

Al

R=1nm

ΔR =0.25nm 

R =2.5nm

B

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ΔR =0.25nm 
R =2.5nm

R=1nm

Figure 4. ‘Weight’ of the s-type envelope function in the ground
state of B (upper panel) and Al (lower panel) doped dots as functions
of the dimensionless acceptor displacement q = h/R at various dot
radii from 1 to 2.5 nm with the step R shown in the figure.

calculate this quota as the probability P = cos2 β for being
in the ground state with the s-type envelope function. Its
dependence on the dimensionless magnitude of the acceptor
position vector q for different dot radii is presented in figure 4
(upper panel). It is seen that the greater values of P are
achieved at smaller values of the dot radius (correspondingly,
greater values of E1h(q) − E0h(q)) and smaller values of q ,
which provide the smaller values of V (q). If the acceptor
is located at the dot centre (q = 0), then the quota of
the s-type envelope function equals 1. In the opposite case,
when the dot radius becomes greater, and q corresponds
to the maximum of V (q) (see figure 3), the probability
approaches 0.5.
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The energies of the other states are determined as the
solutions of the fourth-order algebraic equation

(E − E (0)
0h (q))(E − E (1)

0h (q))(E − E (0)
1h (q))(E − E (1)

1h (q))

= V 2(q)

2
(E − E0h(q))(E − E1h(q)) (22)

that is solved numerically. As follows from an explicit form
of E0,4 and equation (22), the energies of all the six doublets
depend exclusively on the distance between the dot centre and
impurity, and do not depend on the h direction. According to,
at least, equations (19) and (20) this circumstance does not take
place for the wavefunctions.

Dependences of all the six energies, including the energies
E0,4, on the dot radius and the dimensionless magnitude q
of the acceptor position vector are shown in the upper panels
of figures 5 and 6, respectively. As has been pointed out
previously, boron may be treated as a hydrogenic acceptor,
because Q = 0 and the central cell correction is absent.
Therefore, the curves plotted in the upper panels may be
applied to boron as has been indicated in the figures. All the
energies in both figures are counted from the mean quadruplet
energy (E (0)

0h (q) + E (0)

1h (q))/2.
The dependence on the dot radius is monotonic for all

the energies, while the dependences on the dimensionless
displacement q are essentially more complicated. Indeed, as
is seen in the figures, the energy level E0 (lowest solid line)
always remains the lowest one and represents the energy of
the two ground states. At q → 0 this level interflows with
the level E1, obtained as the lowest solution of equation (22),
which leads to the formation of the s-type quadruplet with
the energy E (0)

0h (0). Formation of the p-type quadruplet with
the energy E (0)

1h (0) at q → 0 is a result of a junction
of the level E4 and the level E3 being the third solution
of equation (22), as follows from figure 6. It is also
seen that maximal splitting of the spectrum is achieved at
approximately q = 0.46 which corresponds to the maximal
values of the s–p-type Coulomb matrix element V (q); see
figure 3.

The spatial distribution of the hole density for all the six
doublets is shown in figure 7 for two values of q: q = 0.1
(left column) and q = 0.46 (right column). In fact, we have
plotted the average of the squared absolute value of the total
wavefunction over the unit cell. In this case the Bloch function
oscillations do not appear in the electron density that reduces
to the ‘density of envelope function’

ρenv(r) =
6∑

j=1

|� j(r)|2, (23)

where � j(r) is the j th element of the 6D envelope function
vector |�〉 as before. It is worth emphasizing that the functions
ρenv(r) for two different 6D vectors within any doublet turn
out to be the same. This is a consequence of the twofold
degeneracy, taking place for any doublet, having, in fact, spin
nature. Since we are interested only in the spatial distribution
of the envelope function density, one may calculate ρenv(r)
with any of the two 6D vectors of the doublet.

As our calculations show, for all six doublets the envelope
function density has an axial symmetry with respect to the line

E
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B
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−0.1

0

0.1

0.2

1 1.2 1.4 1.6 1.8 2 2.2 2.4

−0.2
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0

0.1

0.2

1 1.2 1.4 1.6 1.8 2 2.2 2.4
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Figure 5. Splitting of the two lower hole levels shown in figure 1
into the six doublet levels under the action of the spin–orbit and
Coulomb interactions for the dots doped with: hydrogen-like (boron)
acceptors—upper panel; and real acceptors, such as Al—middle
panel, and Ga—lower panel. The Coulomb field of the real acceptors
includes not only the long range part of the hydrogen-like kind,
which is typical for boron, but also the short range term that
considerably enhances the energy splitting. Solid lines represent the
doublet energies described by equation (18), for boron, and (25), for
aluminium and gallium (see the text). Dashed lines are the solutions
of the fourth-order equations (22), for boron, and (26), for aluminium
and gallium.

drawn through the dot centre and acceptor. Therefore ρenv(r)
has the same distribution in any dot cross-section to which the
acceptor position vector belongs. We have depicted in figure 7
such a central cross-section of the electron density averaged
over the unit cell (in the sense of equation (23)) for all the
doublets. Brighter areas in the density plots correspond to
higher values of ρenv(r). The circle represents the nanocrystal
boundary, and the bold point, situated at the vertical axis,
indicates the acceptor location. Since the distribution picture
is of axial symmetry related to the acceptor position vector,
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Figure 6. Hole spectra of the doped dot as functions of the dimensionless acceptor displacement q = h/R from the dot centre. The direction
of the acceptor position vector h is defined by hx/h = 0.8, hy/h = 0.5, and hz/h = 0.33. Dashed and solid lines imply the same as those in
figure 5 (see the caption).

such an acceptor position may be treated as an arbitrary one,
without loss of generality.

To illustrate the role of the system asymmetry due to
acceptor existence in the dot, we have chosen two values of
the acceptor displacement from the dot centre. The first one,
q = 0.1, defines weak deviations from the central symmetric
picture in the electron density distribution taking place at
q = 0. The second value, q = 0.46, corresponds to the
greatest magnitude of the s–p-type Coulomb matrix element
V (q) and, consequently, the maximal degree of the system
asymmetry.

It should be noted that general trends in a relocation of the
electron density under the action of the acceptor electric field
are, in fact, similar for all the doublets in both cases q = 0.1
and q = 0.46. In particular, the ground state electron density
shifts to the acceptor site, while for the excited states, as the
energy of the state increases, the electron density gradually
moves into the areas free of the acceptor.

It is also interesting to trace some correlation between the
energy level behaviour (see figure 6) and the envelope function
density depending on q . As is seen in figure 6, for all values
of q , except for the small values not exceeding q ∼ 0.2,
the energy branches E0 and E1, as well as E4 and E5, are
close and parallel. This indicates, presumably, that the electron

densities should resemble each other, which is confirmed by
the panels (a), (b), and (e), (f) in the right column of figure 7.
At small q the level E1 is very close to the energy level of the
ground states E0, but does not ‘interact’ with it. As a result,
the wavefunctions and the electron densities of these doublets
appreciably differ; see panels (a) and (b) in left column of
figure 7. At the same time, the plots in the left panels (b) and
(c) almost coincide. Figure 6 shows that as q increases from
zero, the levels E1 and E2 converge, forming anticrossing at
q ≈ 0.1. This indicates the greater interaction between these
two levels compared to that with all the other levels. However
both these levels are of the s type at q → 0. Therefore, the
squared absolute values of the corresponding wavefunctions
turn out to be almost the same, as shown in the plots (b) and
(c). The strongly excited states with the energies E3, E4, and
E5 are constructed predominantly from the states with the p-
type envelope functions, which yields asymmetric pictures of
the density distributions.

Finally, we touch briefly on the envelope function density
in the nanocrystal at q = 1. The s–p Coulomb matrix elements
have some intermediate values in this case, see figure 3, relative
to the cases considered above. Hence, one could expect for
q = 1 the distribution picture being a transient one between
the pictures presented in the left and right panels of figure 7.
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 (f)  (f) 
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Figure 7. Density plot of the probability distribution ρenv(r) of all
the six doublets at q = 0.1 (left column), and q = 0.46 (right
column) for a nanocrystal’s central cross-section containing the
hydrogenic (boron) acceptor. The acceptor position is indicated with
a bold point. (a)—ground state; from (b) to (f)—from first to fifth
excited states. For each state the hole density is normalized to its
maximum in this state, and rises from dark to light. The nanocrystal
boundary is shown with the circle. R = 1.5 nm.

Meanwhile, the calculations show that the electron density in
this case is almost equivalent to that at q = 0.46. For this
reason we do not depict it in figure 7. Such conformity is

explained, presumably, with approximate invariance for q �
0.46 of the basic parameter V (q)/(E1h(q) − E0h(q)) defining
the spectrum splitting.

4.2. Central cell effect

Let us now examine the role of the central cell field in the fine
structure formation in silicon nanocrystals doped with some
other acceptors of the third group, such as aluminium and
gallium. In contrast to boron, all these chemical elements
produce a substantial chemical shift of the ground state energy
in bulk silicon. Therefore, we may expect considerable
reconstruction of the energy spectrum and hole states in
the dots with these acceptors. We shall not consider the
nanocrystals doped with indium and, especially, thallium
because they are deep impurities rather than the shallow ones.
For this reason the acceptor states in In and Tl doped dots
will mainly form under the action of the acceptor field but not
the confining potential of the dot. Meanwhile, our treatment
implies the opposite.

Formally, the basic equation of the eigenstate and
eigenvalue problem (equation (17)) does not change its form
in the case where we take into account the central cell field.
However potential energy V (r) has now a short range nonzero
addition W̄ = −Qδ(r − h) that can be comparable with
the long range part Vsp(r) + Vih(r, h) of the Coulomb field.
Correspondingly, matrix elements of W̄ arise in equation (17)
and produce changes in the solutions obtained earlier for the
case of a hydrogenic (boron) acceptor. The s–s, s–p, and p–p
matrix elements of the averaged central cell potential W̄ have
the following form:

〈s| W̄ |s〉 = −Q
π j 2

0 (πq)

2R3
≡ Wss(q),

〈s| W̄ |pa〉 = −Q

√
3 j0(πq) j1(μq)na

2R3 j0(μ)
≡ W (q)na,

〈pa| W̄ |pb〉 = −Q
3 j 2

1 (μq)nanb

2π R3 j 2
0 (μ)

≡ Wpp(q)nanb,

(24)

where na = ha/h, and j0(x), j1(x) are the spherical Bessel
functions of the argument x .

As before, equation (17) yields two doublet and two
quadruplet solutions. The energies of the doublet states are
obtained analytically and represent the energies of the ground
and third or fourth excited states, as shown in figure 6 with
solid lines. The explicit form of the doublet energies is as
follows:

E0,3/4 = E (0)

0h (q) + E (0)

1h (q) + Wss(q) + Wpp(q)/2

2
± 1

2 [(E (0)

0h (q) − E (0)

1h (q) + Wss(q) − Wpp(q)/2)2

+ 2(V (q) + W (q))2]1/2. (25)

Here we employ the notation E3/4 for the upper doublet energy,
because at small R, depending on q and R, see figures 5 and 6
(left column), it corresponds to either the third or the fourth
excited state. The quadruplet energies are obtained as solutions

10
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of the fourth-order equation

(E − E (0)

0h (q) − Wss(q))(E − E (1)

0h (q) − Wss(q))

× [(E − E (0)
1h (q))(E − E (1)

1h (q)) − Wpp(q)

× (E − E1h(q))/2]
= (V (q) + W (q))2

2
(E − E0h(q) − Wss(q))

× (E − E1h(q)). (26)

Of course, expressions (25) and (26) transform into the above
expressions (18) and (22), respectively, if the central cell
matrix elements vanish.

It is possible to consider the energies E j , as well as the
matrix elements of both the short and long range parts of
the Coulomb interaction, as functions of the two arguments:
dimensionless impurity displacement q , and dot radius R.
If q = const, matrix elements of the short range potential
decrease proportionally to R−3 as R increases. Matrix
elements of the long range part decrease more slowly, as R−1.
At small dot sizes, of about 2 nm, the central cell corrections
turn out to be the main factor influencing the dot spectrum,
while for bigger dots, having sizes of the order of 4–5 nm,
the central cell corrections are sharply reduced. The hole
spectra for Al and Ga are shown in figure 5 (two lower panels)
depending on R at q = 0.46. It is seen that the spectra are
very similar. This has a simple explanation. Parameters Q
for Al and Ga are very close (QGa/QAl = ηGa/ηAl = 1.155),
which leads to the similarity in the central cell potentials of
these dopants, and the energy spectra of the dot. As is seen
in the figure, the energy splittings for 2–3 nm nanocrystals are
remarkably different for B, and Al and Ga. The strong central
cell field provides the greater splitting in the spectrum relative
to the case of the boron acceptor. At the same time, in the
range of the dot radius 2–2.5 nm, the energy spectra of the dot
with Ga and Al become very similar to the spectrum of the B
doped dot. This, indeed, indicates significant weakening of the
central cell corrections for 4–5 nm quantum dots. Apparently,
the long range Coulomb field becomes even more extensive at
R ∼ 2–2.5 nm than the short range one.

The dependence of the Coulomb matrix elements of
both kinds on q at fixed R has more complicated character
(see figure 3). This dependence defines some nonmonotone
behaviour of the energy branches as functions of q . The picture
of the energy splitting versus the dimensionless displacement
q for Al and Ga doped dots is presented in figure 6 (two lower
panels in both columns) for two values of the dot radius. All
the levels remain doubly degenerate. This is a consequence of
the absence of magnetic field in the system.

In the case of the central located acceptor in the Al or Ga
doped dot, the s- and p-type levels strongly diverge from each
other compared to the case for the B doped dot, see figure 6, on
the distance mainly determined by the s–s-type matrix element
Wss(0). The matrix element Wss(q) has its maximal value at
q = 0, and the s-type level shifts down by a magnitude of
Wss(0). At the same time Wpp(0) = 0, and the p-type level
stays at its primary position. Since the s–p matrix elements of
both the short and long range parts of the Coulomb interaction
equal zero as well, the s- and p-type levels do not mix, which
leads to the existence of uncoupled s- and p-type doublets and

s-and p-type quadruplets, as shown in figure 6. Naturally, the
divergence of the s- and p-type levels becomes greater for the
dots of smaller sizes, and for acceptors with more extensive
short range Coulomb interaction.

We can compare our results on the energy splitting for
the central located boron, aluminium, and gallium acceptors
with the ones obtained earlier by Zhou et al [2] within the
frames of the local density approximation. Note, however,
that their calculations have been performed for a nanocrystal
with too small a size, about 1.6 nm according to the authors’
estimations. Applicability of the k · p method for such small
nanocrystals is, of course, questionable. Nevertheless, we have
determined the energy splitting for a 1.6 nm nanocrystal by the
method used in the present paper. Quite good agreement has
been found between the results of our works. In particular,
we have obtained the difference of the p-type quadruplet and
the s-type doublet energies approximately equal to 0.2 eV (B),
0.75 eV (Al), and 0.85 eV (Ga), while according to [2] these
energies, respectively, equal 0.25, 0.55, and 0.55 eV. Perhaps
some remarkable excess of the energy values arising in our
calculations for Al and Ga can be explained by the sufficiently
crude approximation used for the determination of parameter
Q, and too small size of the ‘test’ nanocrystal. Since the short
range Coulomb matrix elements sharply increase as the dot
size decreases (as R−3), any, even small, error in the value of
Q can be enhanced at small R. This allows one to hope that
for bigger dots, which are considered in the present work, our
results could be applied with greater accuracy.

As q gradually increases, the s–p Coulomb matrix
elements increase as well and achieve their maximum at
approximately q ∼ 0.4–0.5. Accordingly, strong coupling of
the s-and p-type hole states and significant reconstruction of
the energy spectrum take place at those values of q . Further
increase of q leads to the fast reduction of all the short range
Coulomb matrix elements which equal exactly zero at the
nanocrystal boundary. As a result, the orders of the energy
levels at q = 1, and their energies, are the same for all the
dopants.

To compare the hole densities in the nanocrystal with
embedded hydrogen-like and real acceptors we have plotted
in figure 8 the difference of the envelope function densities for
Al and B: ρ(r) = ρ(Al)

env (r) − ρenv(r) for R = 1.5 nm. The
wavefunctions and hole densities of the Ga doped quantum dot
are almost equivalent to those of the Al doped dot. All the
distinctions can be estimated to a few per cent. For this reason
we do not adduce here corresponding plots for gallium. The
envelope function density ρ(Al)

env (r) has again an axial symmetry
as it had earlier for the case of the hydrogen-like acceptor. The
left column in figure 8 shows ρ(r) for q = 0.1. ρ(r) for
q = 0.46 has been shown in the right column.

There are seen in figure 8 (left column) the general trends
in behaviour of the hole densities at small q that may be
formulated as follows. All the states, having lower energies
compared to the corresponding energies of the B doped dot,
tend to have additional accumulation of the hole density at the
acceptor site. Naturally, the states with the higher energies
have an opposite trend. At the same time, as follows from
our calculations, the absolute value of ρ(r) for any state is
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(e) (e)
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(c)

(b)

(a) (a)

(b)

(c)

(d)

Figure 8. Density plot of ρ(r) caused by the central cell potential
of the Al dopant in a 3 nm nanocrystal. Dark and light areas
correspond to minimal negative and maximal positive values,
respectively, of ρ(r). The unit of the grayscale bar is the same for
all panels. Left column—q = 0.1, right column—q = 0.46. The
circle shows the boundary of the dot’s central cross-section
containing the acceptor. The latter is indicated with a bold point.

of the order of ten per cent of ρenv(r) or even less. Hence,
one may conclude that the relocation of the hole density
caused by the short range Coulomb field remains sufficiently
weak. Accordingly, the short range field does not lead to the
considerable reconstruction of the hole states.

The appearance of some additional hole density near the
acceptor is also confirmed with figure 4 (lower panel) for
the ground state. Obviously, the shift of the hole density
from the dot boundary to the acceptor leads to the probability
distribution becoming predominantly of the ‘s’ type. This
should give an increase of the quota of the s-type envelope
function in the ground state doublet, which is actually seen
in figure 4. At q = 0.1 the probability of having the s-type
envelope function for the Al doped dot is greater than that
for the B doped dot. However, the situation reverses as q
increases. For instance, the s-type envelope function ‘weight’
reduces in the ground state doublet for q = 0.46 in the dot with
aluminium relative to the dot with boron as shown in figure 4.

At q = 0.46, functions ρ(r) for the ground and first
excited states, see figure 8 (right column, panels (a) and (b)),
become positive around and above the acceptor on the dot
cross-section, and negative below the impurity. However, it is
seen in figure 7, panels (a) and (b), that the maxima of the hole
densities at q = 0.46 are located a little below the acceptor,
between the latter and the dot centre, in contrast to the case
for q = 0.1 (panels (a) and (b) of the left column in figure 7).
Hence, the envelope function density again shifts towards the
acceptor. This means that the redistribution of the hole density
inside the nanocrystal in the case where q = 0.46, in fact,
obeys the previous regularity: the hole density tends to collect
near the acceptor due to the additional short range potential.
Naturally, an opposite trend is observed for the highly excited
states, the fourth and fifth ones. As in the case of q = 0.1, we
emphasize that all the changes remain very weak and do not
exceed several per cent of ρenv(r).

5. Conclusion

Now we briefly summarize our consideration with a few
concluding remarks. First, it has been revealed that
introduction of a shallow acceptor inside a silicon nanocrystal
leads to the total removal of the spectrum degeneracy, except
for the twofold spin degeneracy that can be removed only with
a magnetic field. The structure obtained for the spectrum
strongly depends on what chemical element is embedded
into the quantum dot. The level splitting increases for the
acceptors with stronger central cell interaction. It is not so
for the wavefunctions. They change insignificantly, and within
accuracy of ten per cent may be described using the functions
of the dot doped with a hydrogenic acceptor. Second, we
have found the dependence of the energy splitting on the
dot size. The splitting gradually increases if the dot size
decreases. Finally, the energy spectrum has a complicated
pattern depending on the acceptor position in the dot. In
particular, for Al and Ga doped dots, maximal splitting of the
levels takes place at small acceptor displacement from the dot
centre, while for hydrogen-like impurity the splitting becomes
maximal at the distances of about half the dot radius. At
the same time, maximal reconstruction of the dot spectrum,
accompanied by the maximal entanglement of all the states,
always takes place at about R/2 displacement, especially for
small nanocrystal sizes.
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